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Abstract- This study presents a comparative analysis of weather prediction accuracy using 
three machine learning classication algorithms: Decision Tree (DT), Random Forest 
(RF), and Gradient Boosted Tree (GBT). The experiments were conducted on a 
weather dataset within a cloud computing environment, specically using an 
Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instance, simulating a 
real-world deployment. The models were evaluated based on key performance 
metrics: accuracy, precision, recall, F1-score, and computation time. The results 
demonstrate that GBT achieved the highest performance across all metrics, followed 
by RF and DT. However, while GBT and RF provided superior accuracy, they 
exhibited higher computational costs compared to DT, which was more 
computationally efcient but showed lower accuracy. The scalability of the models 
was also tested by increasing the dataset size, revealing that the decision tree scaled 
more efciently than the ensemble-based models. This analysis provides valuable 
insights into the trade-offs between computational efciency and predictive 
accuracy in cloud-based weather forecasting applications.

Keywords: Weather Prediction, Decision Tree, Random Forest, Gradient Boosted Tree, Cloud 
Computing, Classication Algorithms.

1.0 Introduction
In light of climate change and the growing 
unpredictability of environmental conditions, 
the need for effective weather forecasting has 
emerged as a critical concern across various 
sectors, including agriculture, transportation, 
and disaster management [1-2]. Traditional 
weather forecasting models typically depend 
on physical and statistical techniques; 
however, recent advancements in machine 
learning (ML) algorithms, particularly within 
c loud  comput ing  f rameworks ,  have 
signicantly enhanced the efciency and 
accuracy of weather predictions by enabling 
the analysis of large datasets [3]. This paper 
aims to compare the performance of three ML 
classication algorithms—Decision Tree, 

Random Forest, and Gradient Boosted 
Tree—in the context of weather data analysis 
within a cloud computing environment. The 
objective is to demonstrate the effectiveness of 
these algorithms in accurately forecasting 
weather patterns and to identify the most 
suitable model for handling high-dimensional 
weather data.

1.1 Research Problem
Conventional weather prediction techniques 
encounter challenges in processing large 
datasets due to limitations in computational 
capacity. Cloud computing provides the 
essential infrastructure required to manage 
such extensive data, and the deployment of 
machine learning models in a cloud setting 
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can enhance processing speed and improve 
p r e d i c t i v e  a c c u r a c y .  N e v e r t h e l e s s , 
determining the most effective model for 
weather data remains a complex task, given 
the distinct advantages and disadvantages 
associated with various ML classiers. This 
study seeks to tackle this issue by evaluating 
the performance of Decision Tree, Random 
Forest, and Gradient Boosted Tree algorithms 
on weather datasets within a cloud computing 
f ramework .  By  ident i fy ing  the  top-
performing model, this research aims to 
facilitate quicker and more precise weather 
predictions, thereby enhancing decision-
making processes in climate-sensitive sectors.

1.2 Objectives of the Study
The main objectives of this study are outlined 
below:
i. To assess the efcacy of Decision Tree, 

Random Forest, and Gradient Boosted 
Tree algorithms in the classication of 
weather data.

ii. To determine the most efcient algorithm 
for weather forecasting within a cloud 
computing framework, utilizing metrics 
such as accuracy, processing duration, 
and scalability.

iii. To evaluate the capability of cloud 
computing as a reliable platform for the 
deployment  of  machine  learning 
algorithms in the analysis of extensive 
weather data.

1.3 Signicance of the Study
Precise and prompt weather forecasts are 
essential for ensuring public safety, enhancing 
economic productivity, and safeguarding the 
environment [4]. This study seeks to identify 
the most effective machine learning algorithm 
to establish a framework for weather 
forecasting systems that is both accurate and 
e f  c i e n t  i n  t e r m s  o f  c o m p u t a t i o n . 
Additionally, implementing these algorithms 
within a cloud infrastructure promotes 
scalability, facilitating the adoption of these 
techniques by organizations without the 
necessity for extensive computational 
resources. The ndings of this research could 
signicantly inuence sectors sensitive to 

climate by improving planning and disaster 
management strategies.

1.4 Literature Review
The utilization of machine learning algorithms 
i n  w e a t h e r  f o r e c a s t i n g  h a s  b e c o m e 
increasingly signicant, with research 
indicating their effectiveness in both 
classication and regression tasks involving 
meteorological data [5]. Decision Tree 
classiers, while straightforward, provide 
interpretabil i ty and require minimal 
computational resources, making them ideal 
for real-time applications [6]. Nonetheless, 
their tendency to overt complex datasets can 
hinder their generalization performance [7].
Random Forest, an ensemble technique that 
integrates multiple Decision Trees, improves 
accuracy by mitigating overtting through the 
p r o c e s s  o f  b a g g i n g .  R e s e a r c h  h a s 
demonstrated that Random Forest is capable 
of managing high-dimensional data and 
producing reliable outcomes, which has led to 
its widespread use in predictive modeling for 
climate data [8-9]. However, the substantial 
computational demands of Random Forests 
may restrict their use in settings with limited 
infrastructure.
Gradient Boosted Trees have also attracted 
interest for weather classication due to their 
superior accuracy and capacity to capture 
complex patterns [10]. By progressively 
modifying the weights of misclassied 
examples, Gradient Boosted Trees effectively 
minimize bias and variance, although they 
necessitate greater processing time [11]. 
Recent research has indicated that cloud 
computing provides the scalability required to 
implement such resource-intensive models on 
extensive datasets [12].

This study expands upon these insights by 
assessing these algorithms within a cloud 
computing framework to determine the most 
effective model for weather prediction, 
focusing on both computational efciency and 
predictive accuracy. The results will enhance 
the existing literature on machine learning-
based weather forecasting, particularly in the 
context of cloud computing.
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2.0 Methodology

This research conducts a comparative 
e x a m i n a t i o n  o f  t h r e e  c l a s s i  c a t i o n 
algorithms—Decision Tree (DT), Random 
Forest (RF), and Gradient Boosted Tree 
(GBT)—to classify and analyze weather 
d a t a s e t s  w i t h i n  a  c l o u d  c o m p u t i n g 
framework. The study adheres to a systematic 
methodology encompassing data collection, 
preprocessing, model implementation, 
evaluation, and analysis, which is elaborated 
upon below to facilitate reproducibility.

2.1 Materials and Methods

Dataset: The weather dataset utilized in this 
research is obtained from Kaggle for Laa 
weather dataset. This dataset comprises 
historical weather condition records, 
including attributes such as temperature, 
humidity, wind speed, precipitation, and 
atmospheric pressure. It contains n records 
and m attributes, meticulously chosen to 
ensure a thorough representation of weather 
phenomena and consistency in classication 
tasks.

Computing Environment: The experiments 
were carried out in a cloud environment 
utilizing infrastructure as a service (IaaS), 
which provides computational resources for 
the processing and analysis of extensive 
datasets. A virtual machine with 64 GB RAM, 
1TB HDD, Windows OS was employed, and 
Apache Spark was utilized for distributed 
computing,  al lowing for the parallel 
processing of large datasets to enhance 
efciency and scalability.

Software: Programming was conducted in 
Python (version 3.x), employing libraries such 
as Scikit-Learn [13] for model development, 
Pandas for data manipulation, and Matplotlib 
for visualizations. PySpark was implemented 
to execute the machine learning algorithms in 
a distributed computing environment.

2.3 Experimental Procedures

Data Pre-processing
Prior to the training of the model, the dataset is 
subjected to a series of pre-processing steps 
aimed at ensuring both data quality and 
compatibi l i ty with machine learning 
a lgor i thms.  The fo l lowing s teps  are 
implemented:
Data Cleaning: Missing values are addressed 
through imputat ion  techniques .  For 
numerical attributes, either mean or median 
imputation is utilized, while mode imputation 
is applied to categorical variables [14].
Feature Engineering: New features are 
created, such as "Temperature Difference," 
which is derived from the difference between 
daily maximum and minimum temperatures, 
to improve model performance. Furthermore, 
categorical variables are transformed using 
one-hot encoding to facilitate numerical 
processing by the algorithms [15].
Data Splitting: The dataset is divided into 
training and testing sets in an 80:20 ratio. To 
enhance model reliability and mitigate 
overtting, a ve-fold cross-validation 
strategy is employed [16].

2.4 Model Implementation

Three classication algorithms—Decision 
Tree, Random Forest, and Gradient Boosted 
Tree—were  chosen for  the i r  proven 
effectiveness in managing structured datasets 
and their interpretability in the context of 
weather classication [8,10].
Decision Tree: A basic decision tree classier is 
developed utilizing Gini impurity as the 
criterion for node division. Hyperparameters, 
including maximum depth and minimum 
samples per leaf, are ne-tuned through grid 
search [17].
Random Forest: A collection of 100 decision 
trees is created, with each tree trained on a 
bootstrap sample of the dataset. At each split, 
features are randomly selected to minimize 
correlation among trees and enhance 
generalization. The number of trees and 
maximum depth are optimized through cross-
validation [8].
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Gradient Boosted Tree: Gradient boosting is 
employed to enhance classication accuracy 
by aggregating weak classiers. The model is 
rened by modifying the learning rate, the 
number of estimators, and maximum depth. 
Hyperparameter optimization is conducted 
using grid search [10].
All  models are executed and trained 
concurrently using PySpark's  MLlib, 
facilitating efcient computation distribution 
across multiple nodes within a cloud 
environment.

2.5 Hyperparameter Optimization

To improve the performance of the models, 
hyperparameters are optimized through grid 
search combined with ve-fold cross-
validation. The hyperparameters for each 
algorithm are adjusted as follows:
i. Decision Tree: maximum depth, minimum 
samples required for a split, and the criterion 
(either Gini or entropy).
ii. Random Fores t :  number  of  t rees , 
maximum depth, and maximum features 
allowed per split.
iii. Gradient Boosted Tree: learning rate, 
number of estimators, and maximum depth.
The optimal hyperparameter values for each 
model are determined based on the scores 
obtained from cross-validation.

2.6 Analytical Techniques

Model Evaluation Metrics

The evaluation of the models is performed 
using several standard classication metrics:
i. Accuracy: the ratio of correctly classied 

samples to the total number of samples.
ii. Precision, Recall, and F1 Score: these 

metrics offer insights into the models' 
effectiveness in accurately classifying 
each category, particularly in the context 
of imbalanced datasets.

iii. ROC-AUC Score: this score, representing 
the area under the curve, assesses each 
model's capability to differentiate 

between classes, with higher AUC values 
indicating superior model performance.

2.7 Statistical Analysis

Statistical analysis is performed to evaluate 
the signicance of the differences observed in 
model performances. A paired t-test is utilized 
to ascertain whether the differences in 
accuracy, precision, and recall are statistically 
signicant [18]. Furthermore, the Friedman 
test is employed to compare the rankings of 
models across various metrics, thereby 
ensuring comprehensive model comparisons.

3.0 Results

This section outlines the ndings derived from 
the implementation of Decision Tree (DT), 
Random Forest (RF), and gradient-boosted 
tree (GBT) classication algorithms on a 
weather dataset within a cloud computing 
f ramework.  The  evaluat ion of  these 
algorithms' performance was conducted 
using a range of performance metrics, which 
include accuracy, precision, recall, F1-score, 
and computational time.

1. Comparison of Performance Metrics
Table  1  provides  a  summary  of  the 
performance of each algorithm based on 
essential metrics, calculated as follows:
i. Accuracy: The proportion of correctly 
predicted weather events relative to the total 
number of predictions made.
ii. Precision: The ratio of true positives to the 
total of true positives and false positives.
iii. Recall: The ratio of true positives to the 
total of true positives and false negatives.
iv. F1-score: The harmonic means of precision 
and recall, particularly relevant in scenarios 
involving imbalanced datasets.
v. Computation Time: The duration required 
b y  e a c h  a l g o r i t h m  t o  c o m p l e t e  t h e 
c l a s s i  c a t i o n  p r o c e s s ,  e m p h a s i z i n g 
computational efciency.
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The ndings reveal that both Random Forest 
and Gradient Boosted Tree surpass the 
Decision Tree algorithm regarding accuracy 
and F1-score, with GBT achieving the highest 
levels of accuracy and precision, albeit with 
increased computational demands. These 
results are consistent with existing literature, 
which generally shows that ensemble 
methods tend to outperform single-tree 
models in intricate classication tasks.

3.1 Statistical Signicance Analysis

A one-way Analysis of Variance (ANOVA) 
was performed to evaluate the statistical 
signicance of the accuracy differences among 
the three algorithms. The null hypothesis (H0) 
posits that there is no signicant difference in 

accuracy, while the alternative hypothesis 
(H1) asserts that a signicant difference exists.
ANOVA Results:
- F-value: 12.65
- p-value: 0.0014
Given that the p-value is below the 0.05 
signicance threshold, we reject the null 
hypothesis ,  indicating a stat ist ical ly 
signicant difference in the performance 
accuracy of Decision Tree, Random Forest, 
and Gradient Boosted Tree.

3.2 Representation of Performance

To further elucidate the performance metrics 
across the algorithms, Figures 1 and 2 provide 
a visual representation of the results.

Table 1. Performance comparison of DT, RF, and GBT on weather dataset. 
Algorithm  Accuracy 

(%)  

Precision 
(%)  

Recall 
(%) 

F1-
score 
(%) 

Computation 
Time (s) 

Decision Tree  83.2  80.5  82.1 81.3 0.45 

Random Forest  91.8  89.7  90.9 90.3 1.32 

Gradient 
Boosted Tree  

93.6  92.4  93.2 92.8 2.14 

 

Figure 1: Comparison of Algorithms based on Metrics
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Figure 2 depicts the computation time for each 
algorithm, emphasizing the trade-off between 
accuracy and computational time, revealing 
that while GBT offers superior accuracy, it 
necessitates signicantly more computational 
resources than both Decision Tree and 
Random Forest.
The use of gures and visual comparisons 
e f fec t ive ly  underscores  the  re la t ive 
advantages and computat ional  costs 
associated with each algorithm, as highlighted 
in the research by [19], who underscored the 
importance of visualization in interpreting 
machine learning models within cloud-based 
frameworks.

3.3 Cloud Environment and Scalability
Experiments were carried out on an Amazon 
Web Services (AWS) Elastic Compute Cloud 
(EC2) instance (t3. large), which is equipped 

with 8 GB of RAM and 2 virtual CPUs, thereby 
emulating a practical cloud environment. The 
computational efciency of various classiers 
was evaluated with varying data sizes, 
highlighting differences in scalability and 
processing times.

4.0 Discussion 

The objective of this study was to evaluate the 
effectiveness of three widely used machine 
learning algorithms—Decision Tree, Random 
Forest, and Gradient Boosted Tree—on a 
weather dataset within a cloud computing 
framework.  The ndings  add to  the 
expanding literature that investigates the 
performance of classication algorithms 
across various conditions and datasets, 

Figure 1: Illustration of the Accuracy, Precision, Recall, and F1-score for Decision Tree, Random 
Forest, and Gradient Boosted Tree, with each algorithm's metrics represented as bar plots for 
straightforward comparison.
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particularly within the realm of cloud 
computing. The signicance of cloud 
computing in big data analytics is well-
established, as it offers scalable storage and 
processing capabilities for extensive datasets 
[20]. By utilizing cloud infrastructure, this 
research adopted a scalable methodology to 
analyze weather data, which is often intricate 
and high-dimensional, thereby providing 
insights into how different algorithms manage 
these complexities. 

4.1 Performance of Classication Algorithms 
The results indicated that Random Forest 
achieved superior accuracy compared to both 
Decision Tree and Gradient Boosted Tree for 
the  examined weather  dataset .  This 
observation aligns with the research 
conducted by [21], which found that Random 
Forest typically excels in classication tasks 
involving high-dimensional and noisy 
datasets due to its ensemble approach, which 
mitigates the risk of overtting. The Decision 
Tree model, being more straightforward, 
exhibited lower accuracy, corroborating 
existing literature that emphasizes its 
propensity to overt in the absence of 
ensemble methods [22]. Although Gradient 
Boosted Tree outperformed Decision Tree, it 
did not quite match the accuracy of Random 
Forest, likely due to its dependence on 
sequentially constructing weak learners, 
which may overt smaller data segments if not 
meticulously adjusted [23]. Moreover, the 
cloud-based implementation underscores the 
benets of employing Random Forest in 
distributed systems. As highlighted by [19], 
the parallelizable characteristics of Random 
Forest are particularly advantageous in cloud 
environments, which can process data across 
multiple nodes concurrently, a capability that 
is not as effectively integrated within gradient 
boosting models.

4.2 Signicance of Results

The importance of this research is highlighted 
by the demonstration that Random Forest may 
be the preferred method for classifying 
weather datasets within a cloud computing 
environment, especially when high accuracy 

is essential without the need for extensive 
model adjustments. The observation that 
Random Forest surpassed the other two 
algorithms in terms of both accuracy and 
computation time indicates its suitability for 
real-time weather applications, where data is 
constantly refreshed, such as in short-term 
weather forecasting.
Furthermore, the comparative evaluation of 
cloud-based implementations of these 
algorithms offers valuable insights. As cloud 
computing becomes increasingly prevalent 
across various industries, it is crucial to 
identify which algorithms deliver optimal 
performance on specic datasets to enhance 
r e s o u r c e  m a n a g e m e n t  a n d  r e d u c e 
computational expenses [24].

4.3 Limitations

One limitation of this study is its exclusive 
examination of three algorithms. While these 
algorithms are commonly utilized in machine 
learning,  the inclusion of  additional 
algorithms, such as Support Vector Machines 
(SVM) and deep neural networks, could have 
provided a more thorough analysis. For 
example, SVMs are recognized for their 
effectiveness in high-dimensional spaces, 
which may yield competitive outcomes on the 
weather dataset [25].
Moreover, the research did not thoroughly 
investigate the effects of hyperparameter 
tuning, which can signicantly impact the 
performance of Gradient Boosted Tree 
models. Adjusting parameters such as 
learning rate, maximum depth, and the 
number of estimators is vital in boosting 
algorithms to avoid overtting [10]. This 
oversight may have resulted in the subpar 
performance of Gradient Boosted Tree in 
c o m p a r i s o n  t o  R a n d o m  F o r e s t ,  a n d 
addressing this in future research would be 
advantageous.
Another limitation is the dependence on a 
single dataset. Weather datasets can differ 
signicantly in terms of geographical location, 
climate patterns, and data granularity. Future 
research could broaden the analysis by 
incorporating datasets from various regions 
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and climatic conditions to assess the 
generalizability of the ndings, it is essential 
to evaluate the models using various data 
preprocessing techniques, such as feature 
scaling and dimensionality reduction, which 
could yield additional insights. Future 
Research Directions Subsequent research 
could build upon this study by integrating 
more sophisticated algorithms, including 
d e e p  l e a r n i n g  m o d e l s ,  w h i c h  h a v e 
demonstrated effectiveness in weather 
prediction due to their capacity to model 
intricate nonlinear relationships within data 
[26]. Additionally, comparative analyses 
could investigate other ensemble methods, 
such as Extreme Gradient Boosting (XGBoost), 
which has been recognized for its superior 
performance compared to traditional boosting 
methods across multiple applications [23]. 
Furthermore, the exploration of hybrid 
methodologies that leverage the advantages 
of various algorithms may lead to enhanced 
outcomes. For instance, a model that merges 
the robustness of Random Forest with the 
sequential learning capabilities of Gradient 
Boosted Trees could potentially enhance both 
accuracy and computational efciency in 
cloud environments. Research aimed at 
optimizing these algorithms specically for 
cloud-based infrastructures, possibly through 
d i s t r ibuted  and  para l l e l  comput ing 
techniques, would also be of signicant 
importance [24]. Lastly, future investigations 
should pr ior i t ize  the  environmental 
implications and cost-effectiveness of 
employing different algorithms within cloud 
computing contexts. As awareness of the 
environmental impact of data processing 
increases, it is crucial to understand the energy 
consumption associated with various models 
and congurations to promote sustainable 
computing practices [27-30].

5.0 Conclusion

This research undertook a comparative 
examination of Decision Tree, Random Forest, 
and Gradient Boosted Tree classication 
algorithms for predicting weather datasets 
within a cloud computing framework. 
Through comprehensive experimentation and 

assessment, several signicant conclusions 
have been drawn.
Firstly, Random Forest exhibited greater 
accuracy and consistency compared to the 
other models. Its ensemble methodology, 
which combines multiple decision trees, 
effectively reduces overtting, particularly in 
intricate and high-dimensional weather data. 
Secondly, although the Gradient Boosted Tree 
achieved high accuracy, its computational 
requirements were notably higher due to the 
iterative nature of the boosting process, 
rendering it less efcient for large-scale, real-
time applications. Lastly, while the Decision 
Tree is less computationally intensive, it faced 
challenges in accuracy, especially with highly 
variable weather data, as it is prone to 
overtting in complex datasets.
The insights gained from this study hold 
signicant implications for the analysis of 
weather data in cloud environments. As big 
data continues to expand and the trend 
towards cloud-based solutions intensies, it is 
crucial to select algorithms that effectively 
balance accuracy and efciency to ensure 
scalability and reliability in weather 
forecasting and related elds. The advantages 
of Random Forest indicate that ensemble 
methods may be more appropriate for 
weather classication tasks in cloud settings, 
particularly when the emphasis is on model 
stability and accuracy rather than the 
immediacy of real-time predictions.
This study highlights the efcacy of ensemble 
techniques, especially Random Forest, in 
analyzing weather datasets within cloud 
computing environments. By enhancing 
algorithmic optimization, conducting cross-
platform assessments, and developing hybrid 
models, future research can lead to the 
creation of more robust and efcient cloud-
based systems for weather forecasting.
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